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ABSTRACT: Monte Carlo (MC) simulations are commonly used to obtain adsorption properties of gas molecules inside
porous materials. In this work, we discuss various optimization strategies that lead to faster MC simulations with CO2 gas
molecules inside host zeolite structures used as a test system. The reciprocal space contribution of the gas−gas Ewald summation
and both the direct and the reciprocal gas−host potential energy interactions are stored inside energy grids to reduce the wall
time in the MC simulations. Additional speedup can be obtained by selectively calling the routine that computes the gas−gas
Ewald summation, which does not impact the accuracy of the zeolite’s adsorption characteristics. We utilize two-level density-
biased sampling technique in the grand canonical Monte Carlo (GCMC) algorithm to restrict CO2 insertion moves into low-
energy regions within the zeolite materials to accelerate convergence. Finally, we make use of the graphics processing units
(GPUs) hardware to conduct multiple MC simulations in parallel via judiciously mapping the GPU threads to available workload.
As a result, we can obtain a CO2 adsorption isotherm curve with 14 pressure values (up to 10 atm) for a zeolite structure within a
minute of total compute wall time.

■ INTRODUCTION
Porous materials such as zeolites, metal−organic frameworks,
and ZIFs have been identified as important classes of materials
suitable for a variety of new industrial applications, which
include CO2 capture, gas separations, and gas storage.1−6 The
pore topologies and chemical composition of the structures are
key factors that determine the utility of a given material for a
particular application. Given that small changes in the material
can potentially lead to significantly different adsorption
properties, the number of distinct materials that can in
principle be synthesized is too large of a number for each of
the structures to be studied in great detail. For example,
although the number of known zeolite frameworks is around
201,7 this number constitutes a very small fraction of more than
5.4 million structures within a hypothetical zeolite database that
are feasible based on theoretical grounds.8,9 Also, accordingly, it
remains a daunting task for scientists to characterize millions of
structures within a reasonable time and to successfully screen
optimal structures for an application of interest.10−12 In our
previous work, we have demonstrated that our graphics
processing units (GPU) code can characterize low pressure
regime of a zeolite structure in just a few seconds via efficiently
computing the Henry coefficient and the heats of adsorption
values.13 Subsequently, we managed to screen over 130 000
zeolite structures14 (reduced from the original set of over a
million based on the free sphere size via Zeo++15) to find the
optimal structures within both the IZA and the hypothetical
zeolite database.16 However, for certain applications, there
remains a need to fully characterize the adsorption properties of
a material at a much wider pressure range, and, accordingly, the
Henry coefficient and the heats of adsorption values are not
sufficient enough to convey all of the important information.
Alternatively, grand canonical Monte Carlo (GCMC) simu-

lations are commonly used to characterize adsorption proper-
ties of a material across a large range of pressure values, and, as
a result, this work focuses on various techniques used to
optimize these simulations. An efficient GCMC simulation
allows full characterization of a very large database of materials
possible and provides insights into material design for various
applications. We again utilize the GPU as our hardware of
choice, but many of the optimization techniques introduced
here are hardware-independent as they can be applied to the
CPU as well.
This Article is organized as follows. In section II, we discuss

in detail our efficient MC algorithm and provide details
regarding the optimization techniques to speed up the
simulations. In section III, we provide the performance results
of our implementation, and finally, in section IV, we summarize
the important findings in our work.

■ GRAND CANONICAL MONTE CARLO METHOD
FOR POROUS MATERIALS

Although this Article focuses on systems that contain CO2 gas
molecules inside zeolite materials, the optimization techniques
that can speed up the MC simulations can readily be applied to
other systems as well. Moreover, although we focus on grand
canonical Monte Carlo (GCMC) simulations in our analysis,
the results can be extended to other types of MC simulations
(e.g., NVT, NPT) as well.
The allowed moves in the GCMC simulation consist of

translation, insertion, and deletion with the following accept-
ance probabilities:
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where N represents the total number of gas molecules in the
simulation box, o and n represent the old and the new states in
the MC moves, β = 1/(kBT) with T = temperature, set fixed at
300 K for all of the simulations, μ = kBT ln Λ3ρ being the
chemical potential of the system, Λ is the thermal de Broglie
wavelength, which is a function of the partial pressure, and ρ is
the particle density for the ideal gas system. ΔE represents the
change in the total energy of the system from the old to the
new state after a single MC cycle. Throughout this work, 75%
of the total MC moves are set to be insertion/deletion moves,
while the remaining 25% are translation moves. The ratio of the
MC moves can be varied and optimized to obtain faster
convergence, but this part is ignored in our analysis and will not
affect the performance analysis in this Article. For simplicity, we
also ignore other commonly used MC moves such as swap and
rotation.
Interactions between the gas−gas and the gas−host particles

are modeled by the shifted Lennard-Jones and the periodic
Ewald potentials. For systems with much larger number of
particles as compared to what is typically observed in zeolites
near full loading (e.g., less than 200 per unit cell), other
methods such as multigrid methods and particle mesh Ewald
are preferred.17 The positions of the framework atoms are fixed
during the MC simulations as the rigidity of zeolite framework
has been shown to be a reasonable approximation in obtaining
accurate adsorption properties.18

All of the force fields in this work come from Garcia-Perez et
al. and Dubbeldam et al.19,20 The gas−host interactions are
precomputed and stored inside an energy grid in GPU global
memory before the MC simulation, and utilized as a lookup
table during the MC cycles.21 The creation of the energy grid is
especially important to block out (i.e., set to high energy)
regions within porous materials that are diffusively inaccessible
within the experimental time scale. The blocking algorithm is
described elsewhere as we utilize an algorithm similar to one
used in flood fill.13

■ OPTIMIZATION TECHNIQUES
Gas−Gas Tabulation Grid. As mentioned in the previous

section, the gas−host grid is necessary to correctly identify
regions limited by diffusion inside the zeolite materials. In
addition, the grid can be used to accelerate the MC simulations
given that explicit gas−host interaction calculations will be
avoided. With the gas−host grid in place, the most time-
consuming part of the MC simulation takes place inside of a
routine that computes the reciprocal components of the Ewald
summation:22
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where Uij
k(r) is the reciprocal k-space pairwise interactions

between particles i and j. For each of these pairwise potential
calculations, the total number of k vectors can range between

500 and 1000 for a typical zeolite structure, making their
calculations significantly more expensive than the real-space
Coulomb calculations. Similar to the gas−host grid, a gas−gas
grid that contains the reciprocal components of the pairwise
interaction terms as a function of pairwise distance can be
created to provide significant speedup to circumvent computing
explicit pairwise calculations.23 The gas−gas grid can be
generalized such that the charges, qi and qj, can be specified
at the point of computation, which allows a single energy grid
to account for many different types of gas molecule mixtures
and thereby minimize GPU DRAM allocation. It turns out that
within the GPU code, the energy grid array read operations
from memory comprised of a large proportional overall wall
time as all of the memory transactions are global, and unlike in
the case of gas−host reads, the operation scales O(N) (as
opposed to O(1)) as for each proposed MC move, so there
needs to be N − 1 read operations for each unique pairwise
interactions. However, the overall performance gained from
reduced number of floating operations far outweighs the
performance loss from additional memory read operations. As
we will demonstrate later, the reciprocal energy components of
the gas−-gas interaction in zeolite are relatively very small as
compared to the total pairwise interaction energy and
accordingly can be omitted without much loss in accuracy.
Thus, an additional speedup can be gained by neglecting to
evaluate the reciprocal terms until at the end of the
equilibration cycles, while accurately accounting for all of the
interactions during the MC production cycles.

Density-Biased Sampling. In many of the zeolite
structures (and porous materials in general), a large portion
of the unit cell volume is considered to be inaccessible to the
guest molecules due to dense packing of silicon and oxygen
framework atoms in the crystalline structure. Moreover, even
some of the low energy regions can be considered inaccessible
due to diffusion limitations. To illustrate this point, we analyze
zeolites MFI, LTA, RHO, and FAU whose coordinates are
taken from the IZA database24 and plot the proportion of gas−
host energy grid points that are smaller than the specified
energy values (horizontal axis) in Figure 1. Here, 0kBT
represents the CO2 minima energy grid point values for each
of the structures (MFI = −12.3kBT, LTA = −11.1kBT, RHO =
−17.1kBT, and FAU = −7.64kBT), where each of the grid
points contains the Boltzmann-weighted average CO2 potential
energies computed from collecting hundreds of randomized
rotations of the molecule about the point. As can be seen from
the curves, there is a large increase in CO2 occupation
probability up until 5−10kBT above the minimum energy
where the occupancy slowly saturates. Respectively, 23.9%,
36.8%, 37.0%, and 41.8% of the MFI, LTA, RHO, and FAU
zeolite structures have regions where the average CO2 energies
are below 100kBT. Even with the inclusion of gas−gas
interactions that can bring down the potential energy of a
given CO2 molecule, 100kBT is too high of an energy such that
all of the regions that contain grid points above this value can
be safely assumed to be inaccessible.
To illustrate these accessible regions within the zeolites, the

CO2 potential energy contour profiles for MFI, LTA, RHO,
and FAU are shown in Figure 2 with blue indicating low energy
regions. These color-coded plots are generated from the GPU
energy grid construction routine that is called before the start of
the MC simulation. Accordingly, this information can be used
to bias the GCMC insertion moves into low-energy regions
such that the system can be equilibrated much more quickly
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from the density-biased sampling technique with quicker ascent
toward the equilibrium uptake value. A similar technique has

been utilized in the lipid bilayer to improve the convergence of
MC simulations.25 The Metropolis criteria were changed to
account for the modified insertion/deletion algorithm that no
longer samples uniformly from the entire simulation volume to
preserve detailed balance where the details are similar to what is
shown elsewhere.25 To eliminate possible biases, the reduced
volume is uniformly sampled during the insertion moves and
not just at the specific low-energy grid points. In our algorithm,
we choose two CO2 energy cutoff values, Ecut,1 and Ecut,2 (where
Ecut,1 = 5kBT + Emin and Ecut,2 = 300kBT + Emin, with Emin
indicating the global minimum energy point), to accelerate
convergence. Above Ecut,1, the CO2 occupation probability
begins to decrease as seen from Figure 1, and the value was
chosen to approximately capture most of the regions that are
likely to be occupied by the CO2. Ecut,2 was chosen such that
any energy above this value is considered inaccessible (3×
larger than the 100kBT cutoff in Figure 1). For all i gas−host
energy grid points where Ei < Ecut,1, we lumped the points that
were distance-wise close to one another (i.e., within 2 Å)
together into one single site. Accordingly, we identified
between 5 and 50 local minimum sites within the zeolite
materials where the likelihood of a single CO2 molecule
occupancy was very high. In our MC routine, the initial 1−2%
of the equilibration cycles were spent with proposed insertion
moves within the regions identified to be below the Ecut,1 cutoff.
During the rest of the equilibration cycles as well as the
production cycles, insertion moves were sampled from all

Figure 1. CO2 potential energy distribution for zeolites MFI (red
line), LTA (green line), RHO (blue line), and FAU (brown line). The
minimum energy point for each of the four structures (i.e., MFI =
−12.3kBT, LTA = −11.1kBT, RHO = −17.1kBT, and FAU =
−7.64kBT) is shifted to be 0kBT for illustration purposes. In the
figure’s vertical axis, probability indicates the proportion of energy grid
points below a given kBT from the horizontal axis. MFI, LTA, RHO,
and FAU contain, respectively, 23.9%, 36.8%, 37.0%, and 41.8% of
total energy grid points below 100kBT. Accordingly, the majority of the
simulation volume is considered to be inaccessible due to very high
potential energy.

Figure 2. The CO2 energy grids for zeolites (a) MFI, (b) LTA, (c) RHO, and (d) FAU. The blue regions indicate low energy regions where the
likelihood of finding CO2 is high.
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energy grid points (roughly 10−50% of the total energy grid
points depending on the structure) from values with Ei < Ecut,2.
Later in this Article, we demonstrate that the implementation of
two-level density-biased sampling leads to faster convergence to
the average loading values inside the zeolite structures.
GPU Architecture Utilization. The GPU architecture has

at its disposal thousands of threads available for parallel
processing. Unfortunately, there is not enough workload in our
problem to efficiently allocate a large number of threads given
that the ratio between the number of threads and number of
particles remains large. In search for efficient utilization of the
GPU threads, we decided to allow for multiple MC simulations
to be conducted in parallel on the same material with
independent simulations processing different pressure values
to obtain a full isotherm calculation in a single simulation. By
allowing the GPU threads to work on the same isotherm during
a given simulation, the computational cost it takes to generate
the energy grid can be incurred only once as these data can be
shared by all of the parallel simulations.
The mapping between the GPU architecture and the GCMC

system is illustrated in Figure 3. In the default setting, the GPU

code launches 14 × 8 CUDA blocks to concurrently process
112 independent MC systems. The number 14 (8) was chosen
to be equal to the number of streaming multiprocessors (the
maximum number of resident blocks) in the Tesla C2050 cards.
Anywhere between 10 and 30 different pressure values are
sufficient to obtain a general adsorption isotherm profile that
can provide all of the essential adsorption information of a
given material. In the default setting of the code, 14, user-
defined pressure values can be processed by 8 different blocks
with each conducting its own MC simulation with different
randomized numbers. This implementation can effectively
reduce the number of production cycles per block by 1/8,
which can lead to a significant speedup in the overall wall time
especially when the number of production cycles is far greater

than the equilibration cycles. The CUDA block size is set to be
32 threads as these threads work together to parallelize the
energy calculations, which is the bottleneck routine in a given
MC cycle.
All of our simulations were conducted on the Dirac cluster at

the National Energy Research Scientific Computing (NERSC)
Center utilizing the Nvidia Tesla C2050 Fermi cards. We
utilized CUDA 4.0 and gcc 4.4.2 compiler, and the CURAND
library is used to generate pseudorandom numbers during the
Monte Carlo simulations.

■ RESULTS
In all of our results, zeolites MFI, LTA, RHO, and FAU are
chosen as test structures in the performance analysis as insights
gained from them can extend to other zeolite structures well.
The pressure values were chosen to vary from 0.001 to 100.0
atm, covering a wide range of values that are of interest to most
applications related to gas adsorption.
First, we focus on the performance impact of utilizing the

gas−gas grid as the computational cost associated with/without
using the grid is summarized in Table 1 for a given CO2−CO2

pair wise interaction. Without the gas−gas grid, the code
computes 9kxkykz (where typical numbers of kx, ky, and kz are
around 8 or 9) summation terms for each of the atom−atom
interactions within the two CO2 molecules. All of the terms
associated with the explicit computation of the reciprocal
components of the Ewald summation can be stored inside any
of the fast GPU memory as the only variable, the position of
the CO2 molecules, can fit inside the shared memory due to the
small number of particles in our simulations. However, upon
utilizing the gas−gas grid, the reciprocal component of the
gas−gas interactions needs to be read from the precomputed
grid inside the global memory (the number of gas−-gas grid
points typically are over a million and cannot be stored inside
any of the fast GPU memory), and its evaluation can get very
expensive. On the other hand, the evaluation of the gas−gas
grid requires far less compute flops as the term does not scale
with the total number of k vectors. For a given CO2−CO2
interaction, there are 3 (x, y, and z) × 3 (three atoms within a
CO2 molecule) × 8 (number of nearest energy grid points for
interpolation) = 72 words that need to be read from memory to
evaluate a given pair potential via interpolation. Some of these
global memory transactions can be coalesced because some of
the data are located within a contiguous block of the global
memory. However, there does not seem to be a data structure
in which all eight nearest neighboring energy grid points are
located within a contiguous memory block, and, accordingly,
multiple memory transactions from the gas−gas grid are
required. Overall, utilizing the gas−-gas grid makes the overall
MC routine memory-bound as the number of memory
transactions becomes very large as compared to the number
of floating point operations.
The speedup (i.e., the ratio between compute wall time

without utilizing the gas−gas grid and the time with the grid)
varies depending on the uptake (i.e., loading) level of the gas
molecule. To illustrate this point, the GCMC simulations for

Figure 3. The mapping between CUDA blocks and GCMC
simulations. A given CUDA block, i, conducts its own independent
GCMC simulation at pressure p(i). In this particular configuration
setting, eight blocks conduct GCMC simulation at the same pressure
value to obtain more data for effective faster convergence in the
GCMC simulations. The threads within the CUDA block parallelize
the energy calculation routine, which is identified to be the bottleneck
routine in MC calculations.

Table 1

method limiting factor number of operations per pair potential

no grid compute bound 9kxkykz summations
gas−gas grid memory bound 72 array reads
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the LTA zeolite structure were conducted at different pressure
values to observe how speedup changes as a function of loading
(Figure 4). Speedup numbers were obtained by comparing the

wall times (with/without grid) for the code to process 10 000
production MC cycles. Postequilibration wall times were used
to ensure that loading values were similar during all 10 000 MC
cycles to clarify the relationship between loading and
performance.

The results from Figure 4 indicate that speedup does not
increase monotonically with respect to CO2 loading. Near zero
loading, the system is empty during most of the MC cycles,
and, subsequently, the time spent in evaluating the gas−gas grid
is relatively short as compared to in other routines. Accordingly,
in the infinite dilution case at low pressure regime, comparable
wall times are observed for grid/no grid simulations. For larger
loading values (i.e., 0.001−0.1 mol/kg), the speedup number
increases significantly as the explicit evaluation of reciprocal
Ewald summation terms become the bottleneck routine. On the
other hand, in this regime, the number of CO2 molecules is yet
small enough such that the gas−gas grid evaluation was still
comprised of a small portion of the overall MC (without the
grid) time. These two effects combine to provide an overall
increasing trend in the speedup curve, and a maximum speedup
of 44.24× occurs near the loading value of 0.0528 mol/kg. At
even higher loading values, the wall time spent in reading from
the global memory for the gas−gas grid becomes the bottleneck
routine and the speedup starts to decrease. We observe that the
speedup value drops to around 14 at high loading value (10
mol/kg), which corresponding to a pressure of 50 atm.
Next, we explore the impact that the various components of

the Coulomb energy have on the isotherms. At low pressures,
the number of gas−host interactions is much larger than gas−
gas interactions as the total number of CO2 molecules remain
small in this pressure range. Accordingly, in practice, the coarse
modeling of gas−gas interactions can still lead to accurate
isotherm results while possibly speeding up the code as

Figure 4. Speedup (no grid and with grid) as a function of loading for
the LTA zeolite. The maximum speedup of 44.24× occurs at the
loading value of 0.0528 mol/kg. Similar behaviors (not included) are
seen for other zeolite structures as well.

Figure 5. Adsorption isotherm curves for (a) MFI, (b) LTA, (c) RHO, and (d) FAU for case 1 (full calculations of reciprocal and direct Coulomb
terms), case 2 (selective calculations of reciprocal Coulomb terms), case 3 (omission of reciprocal Coulomb terms), and case 4 (omission of
reciprocal and direct Coulomb terms).
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compared to cases where more accurate descriptions of the
pairwise interactions are used. To determine both the accuracy
and the performance for different ways of treating the gas−gas
interactions, we take a look at four different cases (from the
most accurate treatment to the least accurate): (1) full
incorporation of both reciprocal and direct Coulomb terms
during the whole equilibration and production MC cycles, (2)
incorporation of the reciprocal Coulomb terms during the last
10% of the equilibration cycles and the entire production MC
cycles, (3) omission of the reciprocal Coulomb terms, and (4)
omission of both the reciprocal and the direct Coulomb terms.
In this context, the direct Coulomb term refers to any real-
space gas−gas interactions within a cutoff value of 12 Å. The
number of equilibration (production) GCMC cycles were set
to be 2 million (1.6 million) with the pressure values ranging
from 0.075 to 25.0 atm.
The resulting adsorption isotherms for MFI, LTA, RHO, and

FAU are shown in Figure 5. For case 4, the exclusion of all
Coulombic gas−gas interactions results in underestimation of
real loading at high pressure values for all of the structures. This
omission plays less of an important role in MFI (Figure 5a),
whose adsorption characteristics are predominantly dominated
by the gas−gas Lennard-Jones van der Waals interaction and/
or the gas−host interactions. Overall, as long as the direct gas−
gas Coulomb terms are properly taken into account, there do
not seem to be significant differences in the loading values as
seen from cases 1, 2, and 3. This seems to indicate that the
Lennard-Jones and the direct Coulomb pairwise interactions for
the gas−gas interactions are sufficient to capture the important
details of the material’s adsorption characteristics. For systems
in which omission of the Fourier components causes larger
differences in the loading values, we might need to adjust the
equilibration with full potential to be more than 10%.
Next, we take a look at the performance analysis for MFI,

LTA, RHO, and FAU for the four cases mentioned previously.
Because the read operations from the gas−gas grid can become
expensive, neglecting the gas−gas evaluation routine altogether
can provide additional speedup on top of the speedup gained
from using the grid in the first place. The GCMC simulation
compute wall times in Figure 6 indicate that there exists about
4.5× average (that is, average for the four zeolites) speedup
upon going from case 1 to case 4. The wall times for case 3 and
4 are similar to one another as excluding the direct Coulomb

term in the calculations does not impact performance greatly.
This can be explained from the fact the most expensive floating
point operations (i.e., 1/r) associated with evaluating the direct
Coulomb terms are already computed for the Lennard-Jones
interactions, and accordingly the Coulomb term does not incur
much additional cost. Overall, to efficiently and to accurately
compute the adsorption isotherms, we choose case 2 as an
optimal strategy. In the limiting case where the number of
production cycle steps is relatively small as compared to the
equilibration steps, the performance loss from choosing case 2
over case 1 comes only from the last 10% of the equilibration
cycles. Moreover, we believe that it remains important to
correctly account for the reciprocal terms in the gas−gas
evaluation even though their impact on the adsorption
characteristics of the examined zeolite materials is negligible.
Particularly because there might be some exceptional circum-
stances in which the adsorption characteristics would be
significantly different especially at very high loading. Overall,
there is an average improvement of about 2.7× in going from
case 1 to case 2 as seen from Figure 6.
Finally, we discuss the impact of the density-biased sampling

technique on the convergence behaviors of the GCMC
simulations. In simulating porous materials, the amount of
time it takes to equilibrate the system at high pressure values
can become lengthy as most of the void space becomes
occupied with the gas molecules. Accordingly, the main source
of error for equilibration is underestimation, rather than
overestimation, of uptake values at high pressure values. As
mentioned in the previous section, we impose two cutoff values,
Ecut,1 = 5kBT + Emin and Ecut,2 = 300kBT + Emin that can
potentially aid in accelerating convergence. In this analysis, we
take a look at three different cases: (1) uniform sampling of the
entire simulation volume (i.e., no cutoff), (2) sampling energy
smaller than Ecut,2, and (3) sampling energy smaller than Ecut,1
for 2% of the initial equilibration cycles and sampling energy
smaller than Ecut,2 for the rest of the cycles. We specifically
focused on the LTA structure at three different pressure values:
1, 10, and 100 atm. At 1 atm (Figure 7a), the number of steps
needed to equilibrate the system to its convergent value of 0.7
mol/kg remained roughly the same in the three cases. However,
at higher pressure values of 10 and 100 atm (Figure 7b and c),
utilizing the two-level cutoff energies in density-biased sampling
(case 3) results in noticeably faster convergence to the
equilibrium loading values as compared to the other two
cases. Overall, the utility of density-biased sampling becomes
greater at higher pressure values due to the larger number of
failed insertion attempts in these dense systems. Moreover, we
can also conclude that gas molecules mostly reside in
adsorption sites that are within Ecut,1 of the minimum energy
value for the zeolite materials and that the adsorption sites are
mostly determined by the gas−host interactions. We can
further reduce the number of MC cyles needed for convergence
by changing both the cutoff energy values and the proportion of
MC cycles spent in each of the two-level sampling stages.
However, we have not fully explored finding the optimal setting
as there exists a complicated interplay between the afore-
mentioned parameters as well as heavy dependence on the
imposed pressure value and the structure itself.
Overall, with all of our optimization techniques in place, we

can compute the CO2 adsorption isotherms of LTA, MFI,
RHO, and FAU utilizing 500 000 equilibration cycles and 800
000 production cycles in 116.58, 92.23, 100.78, and 47.6 s,
respectively, at 14 pressure values from 0.005 to 10 atm. There

Figure 6. The total GCMC wall time in MFI, LTA, RHO, and FAU
for four different cases with regards to treating the gas−-gas
interactions. For all simulations, the total number of MC cycles was
set to be 2 million for equilibration and 1.6 million for production.
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can be an additional decrease in general wall times if we are
interested in nonpolar gas molecules such as methane or ethane
(no Coulomb interactions) or are interested in adsorption
isotherm curves at a smaller pressure range (e.g., up to 1 atm).
The performance numbers reported here indicate that one can
compute over 100 000 CO2 adsorption isotherms within a

reasonable compute wall time of a week utilizing less than 8
GPUs.

■ CONCLUSIONS
In this work, we have made important modifications to the
Monte Carlo algorithms to efficiently compute the isotherms
for various zeolite structures. The gas−gas grid was created to
accelerate the routine for computing the reciprocal terms in the
Ewald summation. Given that gas−host interactions are
predominantly responsible for the adsorption characteristics
of a zeolite material, we can obtain accurate adsorption
isotherms and further speed up the algorithm by selectively
calling the routine that computes these reciprocal terms. For
porous materials, the majority of the simulation volume is
considered to be inaccessible, and we can presample the low
energy regions and accelerate convergence with biased insertion
moves in our Monte Carlo algorithm. Finally, judicious
parallelization algorithm allows for efficient utilization of
threads inside the GPU. Overall, we have achieved 2 orders
of magnitude speed up in our efficient GPU code as compared
to the CPU simulation code without the optimizations. The
limitation of the current GPU code comes mostly from the
small amount of available DRAM (Tesla C2050 card has 3GB
DRAM) as compared to CPU memory. Accordingly, for
structures with relatively large unit cell size (e.g., each length
greater than 80 Å), the mesh will become coarse and adversely
affect the accuracy of the simulations. In cases such as above,
we would need to reduce the amount of DRAM usage by
storing only the energy grid points that are smaller than some
cutoff energy value or utilizing multiple GPUs. Fortunately, we
have not yet encountered a system where this has become an
issue.
Although the analysis has been constrained to CO2

molecules inside zeolite structures, our work can extend to
other systems and other types of MC simulations, which allow
scientists to fully characterize a large database of materials in
reasonable compute time, paving the way to better material
design and synthesis.
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